initialize_tucker#
- ivy.initialize_tucker(x, rank, modes, /, *, init='svd', seed=None, svd='truncated_svd', non_negative=False, mask=None, svd_mask_repeats=5)[source]#
Initialize core and factors used in tucker. The type of initialization is set using init. If init == ‘random’ then initialize factor matrices using random_state. If init == ‘svd’ then initialize the m`th factor matrix using the `rank left singular vectors of the `m`th unfolding of the input tensor.
- Parameters:
x (
Union[Array,NativeArray]) – input tensorrank (
Sequence[int]) – number of componentsmodes (
Sequence[int]) – modes to consider in the input tensorseed (
Optional[int], default:None) – Used to create a random seed distribution when init == ‘random’init (
Optional[Union[Literal['svd','random'],TuckerTensor]], default:'svd') – initialization scheme for tucker decomposition.svd (
Optional[Literal['truncated_svd']], default:'truncated_svd') – function to use to compute the SVDnon_negative (
Optional[bool], default:False) – if True, non-negative factors are returnedmask (
Optional[Union[Array,NativeArray]], default:None) – array of booleans with the same shape astensorshould be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True).svd_mask_repeats (
Optional[int], default:5) – number of iterations for imputing the values in the SVD matrix when mask is not None
- Return type:
- Returns:
core – initialized core tensor
factors – list of factors
- Array.initialize_tucker(self, rank, modes, /, *, init='svd', seed=None, svd='truncated_svd', non_negative=False, mask=None, svd_mask_repeats=5)[source]#
ivy.Array instance method variant of ivy.initialize_tucker. This method simply wraps the function, and so the docstring for ivy.initialize_tucker also applies to this method with minimal changes.
- Parameters:
self (
Union[Array,NativeArray]) – input tensorrank (
Sequence[int]) – number of componentsmodes (
Sequence[int]) – modes to consider in the input tensorseed (
Optional[int], default:None) – Used to create a random seed distribution when init == ‘random’init (
Optional[Union[Literal['svd','random'],TuckerTensor]], default:'svd') – initialization scheme for tucker decomposition.svd (
Optional[Literal['truncated_svd']], default:'truncated_svd') – function to use to compute the SVDnon_negative (
Optional[bool], default:False) – if True, non-negative factors are returnedmask (
Optional[Union[Array,NativeArray]], default:None) – array of booleans with the same shape astensorshould be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True).svd_mask_repeats (
Optional[int], default:5) – number of iterations for imputing the values in the SVD matrix when mask is not None
- Return type:
Tuple[Array,Sequence[Array]]- Returns:
core – initialized core tensor
factors – list of factors
- Container.initialize_tucker(self, rank, modes, /, *, init='svd', seed=None, svd='truncated_svd', non_negative=False, mask=None, svd_mask_repeats=5, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#
ivy.Container instance method variant of ivy.initialize_tucker. This method simply wraps the function, and so the docstring for ivy.initialize_tucker also applies to this method with minimal changes.
- Parameters:
x – input tensor
rank (
Union[Sequence[int],Container]) – number of componentsmodes (
Union[Sequence[int],Container]) – modes to consider in the input tensorseed (
Optional[Union[int,Container]], default:None) – Used to create a random seed distribution when init == ‘random’init (
Optional[Union[Literal['svd','random'],TuckerTensor,Container]], default:'svd') – initialization scheme for tucker decomposition.svd (
Optional[Union[Literal['truncated_svd'],Container]], default:'truncated_svd') – function to use to compute the SVDnon_negative (
Optional[Union[bool,Container]], default:False) – if True, non-negative factors are returnedmask (
Optional[Union[Array,NativeArray,Container]], default:None) – array of booleans with the same shape astensorshould be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True).svd_mask_repeats (
Optional[Union[int,Container]], default:5) – number of iterations for imputing the values in the SVD matrix when mask is not None
- Return type:
Tuple[Container,Sequence[Container]]- Returns:
core – initialized core tensor
factors – list of factors